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A simple combinatorial formula is found for the product of two iterated quantum 
stochastic integrals, and used to find conditions that such an integral represent 
a unitary-valued or *-algebra homomorphism-valued process. 

1. H I G H E R  O R D E R  ITO P R O D U C T  F O R M U L A  

The integrators of  multidimensional quantum stochastic calculus can be 
parametrized by elements of the space 3 ~ consisting of linear transformations 
H in the finite-dimensional Hilbert space C �9 ~ .  Such a transformation 
decomposes naturally (Parthasarathy, 1992) into four components comprising 
a complex number, a vector in ff~, a linear form on ~s and a linear transforma- 
tion on ~s corresponding to the time, creation, annihilation, and multidimen- 
sional gauge components of  the integrator. The corresponding integrator 
process A H consists of operators in the Fock space {R = F(L2(R+) | ~ )  
whose matrix elements between exponential vectors are given by 

<e(f), Ale(g)> = <f(s), Hg(s)> ds <e(f), e(g)> 

where for u e ~ ,  li = (1, u) ~ C G ~ .  We have (Af) t = A f  t where H* 
is the usual adjoint and (Af)  * the restriction of the adjoint to the exponential 
domain. By the quantum Ito formula (Hudson and Parthasarathy, t984) we 
have 

d A f  dA,  K = d A f  ~ (1.1) 
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where 

H o K = H E K  

E being the projector on the canonical embedding of ~ in C G ~ .  When 
equipped with the usual adjunction and the associative multiplication o we 
call `9 the I to a lgebra .  By embedding them in the Fock space (Parthasarathy, 
1992), product formulas for other stochastic calculus theories correspond to 
subalgebras of `9. 

In this paper we are interested in iterated integrals such as 

/t(H1 . . . . .  /4,,) = [ dAnl(q) "'" dAH"(tm) 
J0 < / 1  < .  �9 .<tin< t 

Note that 

I t (H~ . . . . .  H,*,) = I t (H ,  . . . . .  Hm) + (1.2) 

There is a product formula for such integrals expressed in the following 
theorem, which is proved using (1.1) by induction on in + n [the case of 
purely gauge integrals was given in Hudson and Parthasarathy (1993)]. 

Theorem.  We have 

I (H,  . . . . .  Hm)I(Hm+i . . . . .  Hm+,) 
in~-ll 

= I(H , . . . . .  ( 1 . 3 )  
r=max{m,n} P ~ P r  

where Pr is the set of ordered partitions P = (Pl . . . . .  Pr) of (1 . . . . .  in + 
n) into r subsets which are either singletons or pairs {p, q} with p E { 1, 
. . . .  m} a ndq  E {m + 1 . . . . .  m + n} in which {1 . . . . .  m} and {m + 1, 
. . . .  m + n} occur in their natural orders, and H{p,q} : Hp 0 Oq.  

Since I(Hz . . . . .  Hm) = I(Hl  | "'" | 14,,) is linear in HI . . . . .  H,,,, we 
may extend I to a linear map from elements of the tensor space 

g- = C |  |  |  | ~ |  |  | - . .  

over ,9 to processes in Fock space, in such a way that 

I (A) I (B)  = I(A * B),  /(A t) = l(a)  t (1.4) 

where the associative multiplication * is determined by (1.3) and the involu- 
tion on tensors is inherited from that on `9. Note also that * is well defined 
on the extended tensor space (in which infinitely many homogeneous compo- 
nents may be nonzero) even though the integral I may no longer be defined. 
We denote the extended tensor space equipped with the product * and the 
involution 1" inherited from ,9 by F(`9). 
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In most  applications of  quantum stochastic calculus there is given an 
ini t ial  unital t -a lgebra ~ .  We define the multiplication * in the tensor product 
[ '(3 ~) = ~ | F(3 ~) by the natural product rule (a | A) * (b | B) = ab | 

A * B, and equip it with the product  involution. The integration map I 
ampliates to the tensor product with ~ ,  so that (1.4) remains true for integrands 
in ~ @ F(~)  when the integrals are defined. 

2. E V O L U T I O N  G E N E R A T O R S  

Let R = {kl < " '"  < kr} and S = {ll < " '"  < Is} be possibly empty 
sets whose union is {1 . . . . .  n}, with respectively r = I R[ and s = [SI 
elements. For a nonnegative integer n let ~ | 3 ~| = ~ if n = 0 and ~ | 
3 ~ |  |  (n fac tors )  i f n  > 0. L e t a  s ~ | 1 7 4  E ~ |  ~| 
respectively, and define an element aRb s of  ~ | 3 ~| by bilinear extension 
of  the rule for product elements: 

(a ~ | a l | . . .  | d )R (b  ~ | b ~ | . . .  | bs) s = c o | c 1 |  . . .  | c n 

where c o = a~ ~ and f o r j  = 1 . . . . .  n, c j is a i i f j i  = ki ~ R A S ' ,  b m i f j  
= l m  E R '  A S, and a i o b m i f j  = ki = l m  E R ('1 S (complements are in 
{ 1 . . . . .  n}). Note that by taking either R or S empty we obtain a bimodule 
action of  ~ on each ~ | 3 ~| Using (1.3), the product a * b = c = (Co, 
cl . . . .  ) of  elements of  [ '(3 ~) can then be expressed in component  form as 

C n : ~  R S arbs  (2.1) 

where, for n = 0, 1, 2 . . . . .  the sum is over the 3 n choices o f  ordered pairs 
of  subsets R and S whose union is { 1 . . . . .  n}. 

Whether  or not I(u) exists, conditions on u ~ F(~)  formally equivalent 
to the unitarity o f  the process l (u)  are that 

u * u  t : u t *  u = ( 1 , 0 , 0  . . . .  ) 

where 1 is the identity element o f  .~. Evidently such elements form a group 
G under *. Moreover,  u s G if and only if its components  satisfy 

~a -~rtlR"tS-'s = ~ ur +R.usS = 8~,01, n = 0, 1, . .  . (2.2) 
RUS= { 1,...,n} RUS = { l,...,n } 

For N = 0, 1 . . . .  let us denote by G N the set o f  sequences (u0 . . . . .  UN), 
with each u, ~ ~ | ~| and such that (2.2) holds for n = 0 . . . . .  N. Then 
G N is a group under the composit ion defined by (2.1); we call its elements 
N t h - o r d e r  evolut ion  generators .  Can such a generator (u0 . . . . .  UN) be extended 
to an element of  G? 

This question can be answered affirmatively in the case of  purely gauge 
stochastic integrals (Hudson and Parthasarathy, 1993). Indeed, let 3~0 be the 
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subalgebra of 5 ~ consisting of linear transformations on 7~. Then in this case 
uj ~ a~ @ 5~J,j  = 1 . . . . .  N. The projector E of Section 1 is just the identity 
of ~0, so that H o K = HK for H, K ~ ~0. We may write the condition on 
the additional element UN+I that (u0 . . . . .  UN, UN+I) E GN+ 1 in the form 

[~] u{(1 | E~N+'-') w + UN+~][s U~R(1 | E~N+'-') w + U7~+,] = 1 | E ~N+' 

(2.3) 

together with the corresponding relations with all u's and u '~ exchanged. In 
(2.3) the summation is over all proper subsets R of {1 . . . . .  N + i} and 
complements are in the latter set. E~ means E | . . .  | E (j factors). Equation 
(2.3) says that Uu+l differs from a unitary element of .v/ |  ,a~0 ~N+I by a linear 
combination of elements formed from (u2 . . . . .  UN). Provided that each a~ 
| ~0 ~N+~ contains unitary elements, which will be so if a~ does, extension 
is always possible. 

3. FLOW GENERATORS 

For the linear map j: d -+ 1~(~) to satisfy the relations 

j(xy) = j ( x )  *j(y) ,  j (x t) = j ( x )  t, x, y E a~ 

corresponding to *-algebra morphism (flow) properties of J = l( j)  (if it 
exists), its components must satisfy 

j , , ( x y )  = .R x -s  Jr()Js(Y) (3.1) 
RUS= { l,...,n } 

and 

L(x t) = .~(x)* (3.2) 

for arbitrary x, y ~ a~. Denote by Z the space of such maps j and by ZN the 
space of Nth-orderflow generators (Jo . . . . .  jN), where j,: a~ --+ a/ | ~| 
is linear and satisfies (3.1) and (3.2) for all n -< N. The extension question 
for such generators can again be answered affirmatively in the purely gauge 
case. If(j0 . . . . .  jN) ~ ZN, then (J0 . . . . .  Ju+O ~ ZN+I if and only if the linear 
t-map JN+l satisfies 

[•  j~(x)(1 | E~N+'-r) w + JN+l(X)] 

x [~ j~ (y ) (1  | E~N+'-r) w +/N+I(Y)] 

= ~j~(xy) (1  | E~N+'-OIV + jN+~(xy) 

for arbitrary x, y E M, where the sum is over all proper subsets of { l . . . . .  
N + 1 }. Evidently there is a plentiful supply of such maps JN+l, differing 
from unital ?-algebra morphisms by maps already determined. 
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4. AC TI ON OF E V O L U T I O N  GENERATORS ON F L O W  
GENERATORS 

The group G acts on the space Z by the action 

u(j)(x) = u * j (x )  * u t 

In terms of components 

u(j)n(X) = E R "S tT UrJs(X)U, 
RUSUT={I,....n} 

Evidently the same formula gives an action of each GN on ZN. 

5. E X A M P L E S  

Consider the first-order evolution generator (1, HI) , where 

. ,  + . I  + = .7 + u, + = 0 

This may be extended to the element u = (1, Ul, u~llul 2}, UflIU{2}U {3} .) 1 1 1 , "" 
of G for which U = l(u) is the iterative solution of the stochastic differen- 
tial equation 

dU = U u t ,  U(0) = 1 (5.1) 

Existence, uniqueness, and unitarity of the solution of (5.1) were proved in 
Hudson and Parthasarathy (1984) in the case when the components of ul in 
.~/are norm bounded. 

Similarly the first-order flow generator (id, Jl), where the t -map jl 
satisfies 

jl(xy) = j l (x)y  + xj l (y)  + j l (x) j t (y)  

extends to the e lement j  = (id, j l ,  (Jl | id)jb (Jl | id | id)(jl  | id)jl, . . . )  
of Z for which J = I(j)  is the quantum stochastic flow satisfying 

dJ(x) = J | idj~(x), Jo(x) = x 

for which an existence theorem was proved in Evans (1989) in the 
bounded case. 

An amusing example of a different kind is found by taking the trivial 
initial algebra C and seeking a flow generator j = (J0, Jl . . . .  ) of  the form 

j,,(x) = xen (x E C) 

where en = e~ is an element of ~ @ . . .  @ ~" (n factors). In the pure gauge 
case, (3.1) is satisfied if 

en = ( - 1 ) ~ e | 1 7 4  
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where e is an idempotent in ~, as is easily seen using the identity 

(-I)" = ~ ( -  1)~(- ly  
RUS={ 1,.,.,n } 
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