Higher Order Ito Product Formula and Generators of Evolutions and Flows

P. Beazley Cohen,¹ T. M. W. Eyre,² and R. L. Hudson²

Received March 28, 1995

A simple combinatorial formula is found for the product of two iterated quantum stochastic integrals, and used to find conditions that such an integral represent a unitary-valued or *-algebra homomorphism-valued process.

1. HIGHER ORDER ITO PRODUCT FORMULA

The integrators of multidimensional quantum stochastic calculus can be parametrized by elements of the space \mathscr{I} consisting of linear transformations H in the finite-dimensional Hilbert space $\mathbb{C} \oplus \mathscr{K}$. Such a transformation decomposes naturally (Parthasarathy, 1992) into four components comprising a complex number, a vector in \mathscr{K} , a linear form on \mathscr{K} , and a linear transformation on \mathscr{K} , corresponding to the time, creation, annihilation, and multidimensional gauge components of the integrator. The corresponding integrator process Λ^{H} consists of operators in the Fock space $\mathscr{H} = \Gamma(L^{2}(\mathbb{R}_{+}) \otimes \mathscr{K})$ whose matrix elements between exponential vectors are given by

$$\langle e(f), \Lambda_t^H e(g) \rangle = \int_0^t \langle \tilde{f}(s), H\tilde{g}(s) \rangle \, ds \, \langle e(f), e(g) \rangle$$

where for $u \in \mathcal{K}$, $\tilde{u} = (1, u) \in \mathbb{C} \oplus \mathcal{K}$. We have $(\Lambda_t^H)^{\dagger} = \Lambda_t^{H^{\dagger}}$ where H^{\dagger} is the usual adjoint and $(\Lambda_t^H)^{\dagger}$ the restriction of the adjoint to the exponential domain. By the quantum Ito formula (Hudson and Parthasarathy, 1984) we have

$$d\Lambda_t^H \, d\Lambda_t^K = d\Lambda_t^{H \circ K} \tag{1.1}$$

¹URA 747 CNRS, Collège de France, 75005 Paris, France

²Mathematics Department, University of Nottingham, Nottingham NG7 24D, United Kingdom.

1481

where

$$H \circ K = HEK$$

E being the projector on the canonical embedding of \mathcal{H} in $\mathbb{C} \oplus \mathcal{H}$. When equipped with the usual adjunction and the associative multiplication \circ we call \mathcal{I} the *Ito algebra*. By embedding them in the Fock space (Parthasarathy, 1992), product formulas for other stochastic calculus theories correspond to subalgebras of \mathcal{I} .

In this paper we are interested in iterated integrals such as

$$I_t(H_1,\ldots,H_m) = \int_{0 < t_1 < \cdots < t_m < t} d\Lambda^{H_1}(t_1) \cdots d\Lambda^{H_m}(t_m)$$

Note that

$$I_t(H_1^{\dagger}, \dots, H_m^{\dagger}) = I_t(H_1, \dots, H_m)^{\dagger}$$
 (1.2)

There is a product formula for such integrals expressed in the following theorem, which is proved using (1.1) by induction on m + n [the case of purely gauge integrals was given in Hudson and Parthasarathy (1993)].

Theorem. We have

$$I(H_1, \dots, H_m)I(H_{m+1}, \dots, H_{m+n}) = \sum_{r=\max\{m,n\}}^{m+n} \sum_{P \in \mathbb{P}_r} I(H_{P_1}, \dots, H_{P_r})$$
(1.3)

where \mathbb{P}_r is the set of ordered partitions $P = (P_1, \ldots, P_r)$ of $(1, \ldots, m + n)$ into r subsets which are either singletons or pairs $\{p, q\}$ with $p \in \{1, \ldots, m\}$ and $q \in \{m + 1, \ldots, m + n\}$ in which $\{1, \ldots, m\}$ and $\{m + 1, \ldots, m + n\}$ occur in their natural orders, and $H_{[p,q]} = H_p \circ H_q$.

Since $I(H_1, \ldots, H_m) = I(H_1 \otimes \cdots \otimes H_m)$ is linear in H_1, \ldots, H_m , we may extend I to a linear map from elements of the tensor space

$$\mathcal{T} = \mathbb{C} \oplus \mathcal{I} \oplus \mathcal{I} \otimes \mathcal{I} \oplus \mathcal{I} \otimes \mathcal{I} \otimes \mathcal{I} \otimes \mathcal{I} \otimes \cdots$$

over \mathcal{I} to processes in Fock space, in such a way that

$$I(A)I(B) = I(A * B), \qquad I(A^{\dagger}) = I(A)^{\dagger}$$
 (1.4)

where the associative multiplication * is determined by (1.3) and the involution on tensors is inherited from that on \mathcal{I} . Note also that * is well defined on the extended tensor space (in which infinitely many homogeneous components may be nonzero) even though the integral I may no longer be defined. We denote the extended tensor space equipped with the product * and the involution \dagger inherited from \mathcal{I} by $\Gamma(\mathcal{I})$.

1482

In most applications of quantum stochastic calculus there is given an *initial* unital \dagger -algebra \mathcal{A} . We define the multiplication * in the tensor product $\tilde{\Gamma}(\mathcal{F}) = \mathcal{A} \otimes \Gamma(\mathcal{F})$ by the natural product rule $(a \otimes A) * (b \otimes B) = ab \otimes A * B$, and equip it with the product involution. The integration map I ampliates to the tensor product with \mathcal{A} , so that (1.4) remains true for integrands in $\mathcal{A} \otimes \Gamma(\mathcal{F})$ when the integrals are defined.

2. EVOLUTION GENERATORS

Let $R = \{k_1 < \cdots < k_r\}$ and $S = \{l_1 < \cdots < l_s\}$ be possibly empty sets whose union is $\{1, \ldots, n\}$, with respectively r = |R| and s = |S|elements. For a nonnegative integer n let $\mathcal{A} \otimes \mathcal{I}^{\otimes_n} = \mathcal{A}$ if n = 0 and $\mathcal{A} \otimes \mathcal{I} \otimes \cdots \otimes \mathcal{I}$ (n factors) if n > 0. Let $a \in \mathcal{A} \otimes \mathcal{I}^{\otimes_r}$ and $b \in \mathcal{A} \otimes \mathcal{I}^{\otimes_s}$, respectively, and define an element $a^R b^S$ of $\mathcal{A} \otimes \mathcal{I}^{\otimes_n}$ by bilinear extension of the rule for product elements:

$$(a^0 \otimes a^1 \otimes \cdots \otimes a^r)^R (b^0 \otimes b^1 \otimes \cdots \otimes b^s)^s = c^0 \otimes c^1 \otimes \cdots \otimes c^n$$

where $c^0 = a^0 b^0$, and for j = 1, ..., n, c^j is a^i if $j_i = k_i \in R \cap S'$, b^m if $j = l_m \in R' \cap S$, and $a^i \circ b^m$ if $j = k_i = l_m \in R \cap S$ (complements are in $\{1, ..., n\}$). Note that by taking either R or S empty we obtain a bimodule action of \mathcal{A} on each $\mathcal{A} \otimes \mathcal{I}^{\otimes_n}$. Using (1.3), the product $a * b = c = (c_0, c_1, ...)$ of elements of $\tilde{\Gamma}(\mathcal{I})$ can then be expressed in component form as

$$c_n = \sum a_r^R b_s^S \tag{2.1}$$

where, for n = 0, 1, 2, ..., the sum is over the 3^n choices of ordered pairs of subsets R and S whose union is $\{1, ..., n\}$.

Whether or not I(u) exists, conditions on $u \in \tilde{\Gamma}(\mathcal{F})$ formally equivalent to the unitarity of the process I(u) are that

$$u * u^{\dagger} = u^{\dagger} * u = (1, 0, 0, \ldots)$$

where 1 is the identity element of \mathcal{A} . Evidently such elements form a group G under *. Moreover, $u \in G$ if and only if its components satisfy

$$\sum_{R\cup S=\{1,\dots,n\}} u_r^R u_s^{\dagger S} = \sum_{R\cup S=\{1,\dots,n\}} u_r^{\dagger R} u_s^S = \delta_{n,0} \mathbf{1}, \qquad n = 0, 1, \dots \quad (2.2)$$

For N = 0, 1, ... let us denote by G_N the set of sequences $(u_0, ..., u_N)$, with each $u_n \in \mathcal{A} \otimes \mathcal{I}^{\otimes_n}$, and such that (2.2) holds for n = 0, ..., N. Then G_N is a group under the composition defined by (2.1); we call its elements *Nth-order evolution generators*. Can such a generator $(u_0, ..., u_N)$ be extended to an element of G?

This question can be answered affirmatively in the case of purely gauge stochastic integrals (Hudson and Parthasarathy, 1993). Indeed, let \mathcal{I}_0 be the

subalgebra of \mathcal{F} consisting of linear transformations on \mathcal{K} . Then in this case $u_j \in \mathcal{A} \otimes \mathcal{F}_0^{\otimes j}, j = 1, ..., N$. The projector E of Section 1 is just the identity of \mathcal{F}_0 , so that $H \circ K = HK$ for $H, K \in \mathcal{F}_0$. We may write the condition on the additional element u_{N+1} that $(u_0, ..., u_N, u_{N+1}) \in G_{N+1}$ in the form

$$\left[\sum u_r^R (\mathbf{1} \otimes E^{\otimes_{N+1-r})^{R'}} + u_{N+1}\right] \left[\sum u_r^{\dagger R} (\mathbf{1} \otimes E^{\otimes_{N+1-r})^{R'}} + u_{N+1}^{\dagger}\right] = \mathbf{1} \otimes E^{\otimes_{N+1}}$$
(2.3)

together with the corresponding relations with all u's and u^{\dagger} exchanged. In (2.3) the summation is over all proper subsets R of $\{1, \ldots, N + 1\}$ and complements are in the latter set. $E^{\otimes j}$ means $E \otimes \cdots \otimes E(j$ factors). Equation (2.3) says that u_{N+1} differs from a unitary element of $\mathcal{A} \otimes \mathcal{I}_0^{\otimes N+1}$ by a linear combination of elements formed from (u_2, \ldots, u_N) . Provided that each $\mathcal{A} \otimes \mathcal{I}_0^{\otimes N+1}$ contains unitary elements, which will be so if \mathcal{A} does, extension is always possible.

3. FLOW GENERATORS

For the linear map $j: \mathcal{A} \to \tilde{\Gamma}(\mathcal{I})$ to satisfy the relations

$$j(xy) = j(x) * j(y), \quad j(x^{\dagger}) = j(x)^{\dagger}, \quad x, y \in \mathcal{A}$$

corresponding to *-algebra morphism (flow) properties of J = I(j) (if it exists), its components must satisfy

$$j_n(xy) = \sum_{R \cup S = \{1, \dots, n\}} j_r^R(x) j_s^S(y)$$
(3.1)

and

$$j_n(x^{\dagger}) = j_n(x)^{\dagger} \tag{3.2}$$

for arbitrary $x, y \in \mathcal{A}$. Denote by Z the space of such maps j and by Z_N the space of *Nth-order flow generators* (j_0, \ldots, j_N) , where $j_n: \mathcal{A} \to \mathcal{A} \otimes \mathcal{I}^{\otimes_n}$ is linear and satisfies (3.1) and (3.2) for all $n \leq N$. The extension question for such generators can again be answered affirmatively in the purely gauge case. If $(j_0, \ldots, j_N) \in Z_N$, then $(j_0, \ldots, j_{N+1}) \in Z_{N+1}$ if and only if the linear \dagger -map j_{N+1} satisfies

$$\begin{bmatrix} \sum j_{r}^{R}(x)(\mathbf{1} \otimes E^{\otimes_{N+1-r}})^{R'} + j_{N+1}(x) \end{bmatrix} \\ \times \begin{bmatrix} \sum j_{r}^{R}(y)(\mathbf{1} \otimes E^{\otimes_{N+1-r}})^{R'} + j_{N+1}(y) \end{bmatrix} \\ = \sum j_{r}^{R}(xy)(\mathbf{1} \otimes E^{\otimes_{N+1-r}})^{R'} + j_{N+1}(xy)$$

for arbitrary $x, y \in \mathcal{A}$, where the sum is over all proper subsets of $\{1, \ldots, N+1\}$. Evidently there is a plentiful supply of such maps j_{N+1} , differing from unital \dagger -algebra morphisms by maps already determined.

4. ACTION OF EVOLUTION GENERATORS ON FLOW GENERATORS

The group G acts on the space Z by the action

$$u(j)(x) = u * j(x) * u^{\dagger}$$

In terms of components

$$u(j)_n(x) = \sum_{R \cup S \cup T = \{1,\dots,n\}} u_r^R j_s^S(x) u_t^{\dagger T}$$

Evidently the same formula gives an action of each G_N on Z_N .

5. EXAMPLES

Consider the first-order evolution generator $(1, u_1)$, where

$$u_1 + u_1^{\dagger} + u_1 u_1^{\dagger} = u_1^{\dagger} + u_1 + u_1^{\dagger} u_1 = 0$$

This may be extended to the element $u = (1, u_1, u_1^{[1]}u_1^{[2]}, u_1^{[1]}u_1^{[2]}u_1^{[3]}, \ldots)$ of G for which U = I(u) is the iterative solution of the stochastic differential equation

$$dU = Uu_1, \qquad U(0) = 1 \tag{5.1}$$

Existence, uniqueness, and unitarity of the solution of (5.1) were proved in Hudson and Parthasarathy (1984) in the case when the components of u_1 in \mathcal{A} are norm bounded.

Similarly the first-order flow generator (id, j_1) , where the \dagger -map j_1 satisfies

$$j_1(xy) = j_1(x)y + xj_1(y) + j_1(x)j_1(y)$$

extends to the element $j = (id, j_1, (j_1 \otimes id)j_1, (j_1 \otimes id \otimes id)(j_1 \otimes id)j_1, \ldots)$ of Z for which J = I(j) is the quantum stochastic flow satisfying

$$dJ(x) = J \otimes idj_1(x), \qquad J_0(x) = x$$

for which an existence theorem was proved in Evans (1989) in the bounded case.

An amusing example of a different kind is found by taking the trivial initial algebra C and seeking a flow generator $j = (j_0, j_1, ...)$ of the form

$$j_n(x) = xe_n \qquad (x \in \mathbb{C})$$

where $e_n = e_n^{\dagger}$ is an element of $\mathcal{I} \otimes \cdots \otimes \mathcal{I}^n$ (*n* factors). In the pure gauge case, (3.1) is satisfied if

$$e_n = (-1)^n e \otimes \cdots \otimes e$$

where e is an idempotent in \mathcal{I} , as is easily seen using the identity

$$(-1)^n = \sum_{R \cup S = \{1, \dots, n\}} (-1)^r (-1)^s$$

ACKNOWLEDGMENTS

This work was supported by EC HCM contract CHRX-CT93-0094. TWME is supported by an EPSRC Research Studentship.

REFERENCES

- Evans, M. P. (1989). Existence of quantum diffusions, Probability Theory and Related Fields, 81, 473–483.
- Hudson, R. L. (1990). Quantum stochastic flows, in *Probability Theory and Mathematical Statistics*, Vol. 1, B. Grigelionis *et al.*, eds., VSP Utrecht, pp. 512-525.
- Hudson, R. L., and Parthasarathy, K. R. (1984). Quantum Ito's formula and stochastic evolutions, Communications in Mathematical Physics, 93, 301–323.
- Hudson, R. L., and Parthasarathy, K. R. (1993). Casimir chaos map for U(N). Tatra Mountains Mathematical Publications, 3, 1–9.
- Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basle.